会员
人工智能算法
更新时间:2023-08-25 10:53:52 最新章节:图书推荐
书籍简介
本书以智能算法为背景,全面地介绍了人工智能的各种算法,本书内容以理论为基础,以应用为主导,循序渐进地向读者揭示怎样利用智能算法解决实际问题。全书共11章主要内容包括MATLAB语言入门、插值算法与曲线拟合、灰色系统理论、傅里叶变换和小波变换、经验模态分解算法、模糊逻辑控制算法、滑模变结构控制、神经网络基本理论、支持向量机、粒子群算法、蚁群算法、模拟退火算法等。本书可作为高校本科生和研究生的学习用书,也可作为科研人员、学者、工程技术人员的相关参考用书。
品牌:清华大学
上架时间:2022-08-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
韩龙等编著
同类热门书
最新上架
- 会员《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch2.0的环境搭建,Python数据科学库,深度学习基本原理,计算机10.8万字
- 会员本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的核心知识、原理和内在逻辑。经过基础篇的学习,想必你已经对深度学习的总体框架有了初步的了解和认识,掌握了深度神经网络从核心概念、常见问题到典型网络的基本知识。本书为核心篇,将带领读者实现从入门到进阶、从理论到实战的跨越。全书共7章,前三章包括复杂CNN、RNN和注意力机制网络,深入详解各类主流模型及其变体;第4章介绍这三类基计算机13.4万字
- 会员本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字
- 会员这是一本系统梳理并深入解析大模型的基础理论、算法实现、数据构造流程、模型微调方法、偏好对齐方法的著作,也是一本能手把手教你构建角色扮演、信息抽取、知识问答、AIAgent等各种强大的应用程序的著作。本书得到了零一万物、面壁智能、通义千问、百姓AI、澜舟科技等国内主流大模型团队的负责人的高度评价和鼎力推荐。具体地,通过本书你能了解或掌握以下知识:(1)大型语言模型的基础理论,包括常见的模型架构、领计算机11.2万字
- 会员机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。计算机18万字
- 会员全书从逻辑上共分3部分。第一部分由第1章和第2章组成,介绍深度学习的基础理论、MindSpore总体架构和编程基础。第二部分由第3~8章组成,介绍MindSpore框架各子系统的具体情况,包括数据处理、算子、神经网络模型开发、数据可视化组件MindInsight、推理、以及移动端AI框架MindSporeLite。第三部分由第9章和第10章组成,介绍使用MindSpore框架开发和训练的经典深度计算机13万字
- 会员这是一本从工程化角度讲解大语言模型的核心技术、构建方法与前沿应用的著作。首先从语言模型的原理和大模型的基础构件入手,详细梳理了大模型技术的发展脉络,深入探讨了大模型预训练与对齐的方法;然后阐明了大模型训练中的算法设计、数据处理和分布式训练的核心原理,展示了这一系统性工程的复杂性与实现路径。除了基座模型的训练方案,本书还涵盖了大模型在各领域的落地应用方法,包括低参数量微调、知识融合、工具使用和自主智计算机12.1万字